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Abstract A new method has been developed for guayule
tissue culture and transformation. Guayule leaf explants
have a poor survival rate when placed on normal MS
medium and under normal culture room light conditions.
Low light and low ammonium treatment greatly improved
shoot organogenesis and transformation from leaf tissues.
Using this method, a 35S promoter driven BAR gene and
an ubiquitin-3 promoter driven GUS gene (with intron)
have been successfully introduced into guayule. These
transgenic guayule plants were resistant to the herbicide
ammonium-glufosinate and were positive to GUS staining.
Molecular analysis showed the expected band and signal
in all GUS positive transformants. The transformation
efficiency with glufosinate selection ranged from 3 to 6%.
Transformation with a pBIN19-based plasmid containing a
NPTII gene and then selection with kanamycin also works
well using this method. The ratio of kanamycin-resistant
calli to total starting explants reached 50% in some
experiments.
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Introduction

Guayule (Parthenium argentatum), a shrub native to the
Chihuahuan desert of Texas and Mexico, is a new crop
candidate for the rubber industry. To date, it is the only hy-
poallergenic natural rubber source under commercial de-
velopment in the world. Commercial guayule farming is
established in California and Arizona although still on a
small scale.

Transformation of guayule with genes of agronomic
importance may lead to further improvements in latex
yield, but efficient tissue culture and transformation
systems are necessary. Tissue culture of guayule dates
back to the early 1980s (Dastoor et al. 1981; Radin et al.
1982; Zavala et al. 1982; Smith 1983; Staba and Nygaad
1983; Dhar et al. 1989; Finnie et al. 1989; Trautmann
and Visser 1990; Castillón and Cornish 2000). Although
shoots, roots and hypocotyls were tested as explants, the
only successful system was shoot node micropropagation.
To this date, no report used leaf tissues as explants.

On the basis of the shoot node micropropagation
system then available, Pan et al. (1996) developed
an Agrobacterium-mediated transformation system. This
method gently wounded each node at the axillary posi-
tion, using the tip of a syringe needle, and introduced
the Agrobacteria. This method has been successfully used
to introduce several different genes into guayule, such
as kanamycin resistance (Pan et al. 1996), and genes in-
volved in rubber substrate biosynthesis, including farne-
syl diphosphate synthase, and geranylgeranyl diphosphate
synthase (Veatch et al. 2003). However, it is very time con-
suming because each node has to be wounded by hand.
Also, the transformation efficiency was very low (0.71%
or less).

Here we report a new leaf tissue method for guayule
transformation that is more facile and more efficient than
the shoot node method. A herbicide resistance gene (BAR
gene) and an intron containing GUS reporter gene have
been successfully introduced into guayule plants and ex-
pressed stably for more than 1 year.
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Materials and methods

Maintenance of plant cultures

Shoot cultures of guayule lines G7-11, N6-5, and hybrid
line AZ101Cl were established and maintained as described
previously (Castillón and Cornish 2000). Half-strength MS
medium (Murashige and Skoog 1962), containing 15 g/l
sucrose and 8 g/l agar, pH 5.8, was used to maintain plant
materials. Shoot tips ≥10 mm were excised and subcultured
in Magenta boxes containing 80 ml fresh half-strength MS.
Roots developed 1–2 weeks after the shoot tips were trans-
ferred to this medium. The cultures were maintained at
25◦C under cool-white fluorescent light (∼50 µmol/m2/s,
12/12-h day/night photoperiod).

Leaf tissue organogenesis

One-month-old guayule plantlets growing in half-strength
MS medium were used to prepare the leaf strips. First, the
shoot tip was cut off and transferred to fresh half-strength
MS medium to develop roots and grow into a new plant.
Then the remaining leaves were cut into ∼8 mm wide strips
and cultured on either MSB2 medium (Pan et al. 1997) or
(1/2NH4)MSB2 medium (MS medium, NH4NO3 reduced
to half and KNO3 increased to 5 g/l, containing 2 mg/l
BA, 30 g/l sucrose, 8 g/l agar, pH 5.8) under high light
(∼50 µmol/m2/s), low light (∼5 µmol/m2/s), or dark con-
ditions for shoot initiation. The explants were transferred to
fresh medium every 2 weeks until new shoots emerged. The
leaf strips with emergent shoots were then transferred to
(1/2NH4)MSB1 [same as (1/2NH4)MSB2 medium except
BA reduced to 1 mg/l] under high light (∼50 µmol/m2/s)
for shoot elongation, and were transferred every 2 weeks to
fresh medium. Once the shoots were 10 mm or longer, they
were transferred onto 1/2MSI0.1 medium (half-strength
MS medium plus 0.1 mg/l IBA) for rooting. Shoot tips
from 1-month-old rooted plantlets were cut and inserted
onto fresh half-strength MS medium for maintenance.

For transplanting, the shoot tip was cut at ∼8 mm be-
low the first shoot node from the maintained plantlet and
inserted into a sterile cellulose plug (CUStarts, Caisson
Laboratories, Inc.). Nine plugs, each with one shoot tip,
were cultured in a sterile Magenta box containing 20 ml
liquid half-strength MSI0.1 without sucrose and agar for
2 weeks. The plugs with the rooted plants were removed
from the Magenta boxes, transplanted into the soil, and
acclimated according to Castillón and Cornish (2000).

Leaf tissue transformation

Plasmid pND4 (Fig. 1) was constructed based on pPZP200
(Hajdukiewicz et al. 1994). It contained a double 35S pro-
moter (Datla et al. 1991) driven BAR gene (Christensen and
Quail 1996) and a potato ubiquitin-3 promoter (Garbaribo
and Belknap 1994) driven intron containing GUS gene

Fig. 1 Map of pND4-TDNA region. LB: left board; Ocs-T: octopine
synthase gene terminator; BAR: herbicide glufosinate-resistant gene;
2×35-P: double 35S promoter; Ubi3-P: potato ubiquitin-3 promoter;
UQ1-GUSInt: the first ubiquitin coding sequence fused to the GUS
gene with an intron; Nos-T: nopaline synthase gene terminator; RB:
right board

(Vancanneyt el al. 1990). Suspensions of Agrobacterium
EHA101 harboring the pND4 binary vector, were prepared
by inoculating 5 ml LB medium plus 20 mg/l rifampcin
and 200 mg/l spectinomycin with 50 µl long-term glycerol
stock in a 50 ml Falcon tube, and shaking overnight at 28◦C.
The suspension then was centrifuged for 15 min at 1,600×g
at room temperature. The supernatant was discarded and the
pellet was re-suspended in 20 ml of Inoculation Solution
(1/10MS salts plus BA 2 mg/l, NAA 0.5 mg/l, glucose 10 g,
acetosyringone 200 µM, pluronic F68 0.05%, pH 5.4).

Leaf strips were soaked in the Agrobacterium sus-
pension at room temperature for 10 min. Soaked strips
were blotted with filter paper and placed on 1/10MSBN
medium (same as Inoculation Solution but with 9 g/l
agar) for 3 days of co-cultivation under low light con-
ditions (∼5 µmol/m2/s). After co-cultivation, they were
transferred to (1/2NH4)MSB2T medium [(1/2NH4)MSB2
plus timentin (Cheng et al. 1998) 400 mg/l] for recov-
ery for 1 week under low light, and then were trans-
ferred to (1/2NH4)MSB2TG1 medium [(1/2NH4)MSB2
plus timentin 400 mg/l, glufosinate 1 mg/l] for selec-
tion under low light, and transferred to fresh medium ev-
ery 2 weeks. Timentin is an antibiotic used to eliminate
Agrobacterium. After green shoots emerged, the explants
were transferred to (1/2NH4)MSB1TG0.6 medium [same
as (1/2NH4)MSB1 but with 200 mg/l timentin, and 0.6 mg/l
glufosinate] for elongation and further selection. The ex-
plants were grown under high light thereafter. Green shoots
10 mm and longer were subcultured to 1/2MSI0.1TG0.5
medium (same as 1/2MSI0.1 but with 200 mg/l timentin
and 0.5 mg/l glufosinate) for rooting for 2–4 weeks. Shoot
tips of the rooted plantlets were subcultured in half-strength
MS medium for maintenance or inserted into a sterile cel-
lulose plug for rooting and then transplanted into the soil
as described in the section on organogenesis.

An independent experiment was carried out to test this
method using Agrobacterium ABI harboring pBIN19-
based binary vectors containing a Nos promoter driven
NPTII gene and a 35S promoter driving a number of other
genes, to transform the guayule lines of G7-11, AZ101CL,
and N6-5. The Agrobacterium culture medium was
changed to include 75 mg/l kanamycin, 100 mg/l spectino-
mycin, and 25 mg/l chloramphenicol. The explants were
recovered for 1 week on (1/2NH4

+)MSB2 medium with
timentin but without selection agent. Shoot selection media
contained 30 mg/l kanamycin (instead of glufosinate) and
the root selection medium contained 30 mg/l kanamycin.
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GUS assay

Histochemical staining to detect GUS activity was con-
ducted as described (Jefferson and Wilson 1991), except
that the concentration of both NaH2PO4 and Na2HPO4 was
increased to 200 mM to avoid false positive results.

PCR and Southern blot analysis

One gram leaf tissue was frozen in liquid nitrogen and
ground to a fine powder using a mortar and pestle. To-
tal DNA was extracted from the powder using Plant
DNAzol (Invitrogen, Cat# 10978-021) according to the
manufacturer’s protocol. PCR was carried out in 50 µl
of mixture containing 5 units of Taq DNA polymerase
(New England Biolabs, Cat# M0267L) and 5 µl of
10× ThermoPol Reaction Buffer (supplied with the en-
zyme), 4 µl of dNTP (2.5 mM each), 200 ng genomic
DNA or 20 pg plasmid DNA, and 100 ng of GUS spe-
cific forward (5′-caacgaactgaactggcaga-3′) and reverse (5′-
tttttgtcacgcgctatcag-3′) primers. After heating the samples
to 94◦C for 2 min, the reaction proceeded with 30 cycles
of 94◦C for 30 s, 56◦C for 30 s and 72◦C for 45 s. A final
elongation step was carried out at 72◦C for 10 min. PCR
products were separated by electrophoresis on 0.9% (w/v)
agarose gels.

For the Southern blot analysis, the non-radioactive
DIG products (Roche, Cat# 1636090, 1093274, 1759051,
1603558, 1585762) were used following the protocol de-
scribed on the Roche website with some modifications.
Ten micrograms DNA from each sample was digested with
HindIII (6 units/µg DNA) for 24 h at 37◦C. The digested
DNA was then electrophoresed in a 0.9% agarose gel in
TAE buffer at 35 V for 14 h. The gel was depurinated, dena-
tured and neutralized. DNA was transferred to a positively
charged nylon membrane and crosslinked. The membrane
was prehybridized in DIG Easy Hyb. at 50◦C for 1 h and
then hybridized with the DIG-labeled GUS-specific probe
overnight at the same temperature. High stringency wash-
ing was carried out at 68◦C for 2×20 min in a buffer con-
taining 0.5× SSC and 0.1% SDS. The hybridization signal
was detected by a chemiluminescent assay using anti-DIG
alkaline phosphatase-conjugated Fab fragment and its sub-
strate CDP-star with the Kodak Image 2000 for 100 min
exposure.

Results

Shoot organogenesis

Effect of low light intensity

When leaf strips were cultured on MSB2 medium (Pan
et al. 1996) they turned brown and withered within 2 weeks.
Modifications of the medium, such as changing the BA con-
centration from 1 to 8 mg/l, adding 20–160 mg/l ascorbic
acid or 1–8 mg/l AgNO3, or replacing sucrose with glu-
cose, did not significantly change explant health. The same

results were found using leaf strips from 2-week-old and
1-month-old plantlets.

However, low light intensity considerably improved the
survival of, and shoot organogenesis from, the guayule
leaf strips. Leaf strips that grew under low light were
greener and healthier than those grown under high light
(Fig. 2).

Different light intensities were tested to determine the op-
timal intensity for shoot organogenesis from guayule leaf
strips. The rate of organogenesis significantly improved
when the light intensity dropped to 12 µmol/m2/s (Fig. 3);
both the number of explants producing shoots and the to-
tal shoots produced were doubled. Lowering of the light
intensity appeared to enhance shoot production, down to
1.5 µmol/m2/s, although the differences were not statis-
tically significant. Dark grown leaf strips had less brown
sectors than those grown under low light, but they produced
fewer shoots.

Duration of low light treatment also was tested. Petri
dishes were cultured under the high light condition
(50 µmol/m2/s) but covered with paper. Light intensity
under the paper was ∼5 µmol/m2/s. The paper was
removed at 1, 2, 3 or 4 weeks. Control plates were not
covered with paper (Fig. 4). Shoot production increased
with longer low light treatment, reaching a maximum at 4
weeks. Explants grown under low light more than 4 weeks
appeared yellow compared with those grown under low
light for 3 or 4 weeks.

Effect of low ammonium

Preliminary experiments showed that under high light con-
ditions, B5 medium (containing lower ammonium than MS,
Gamberg et al. 1968) and half-strength MS medium plus
2 mg/l BA produced fewer brown sectors on the leaf strips
than MSB2 medium. However, the greener tissues did not
produce more shoots as would be expected. This may be
because of inadequate nutrient status in the B5 and half-
strength MS media. A medium named (1/2NH4)MSB2 was
then made by reducing NH4NO3 in half and increasing
KNO3 to 5 g for MS medium. For G7-11, (1/2NH4)MSB2
doubled the shoot production (Fig. 5). Guayule leaf strips
cultured on (1/2NH4)MSB2 medium under low light pro-
duced green shoots within 4 weeks (Fig. 6).

Transformation

Selection with glufosinate

Untransformed guayule leaf strips were very sensitive to
glufosinate. Shoot formation was prevented by 0.5 mg/l
glufosinate. pND4 transformed leaf strips were selected
on 1 mg/l glufosinate after the 3-day co-cultivation and the
7-day recovery period (Fig. 7a). Green shoots appeared 4–6
weeks after culturing on this medium (Fig. 7b). However,
shoot elongation on 1 mg/l glufosinate medium was
very slow so once shoots appeared, the concentration of
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Fig. 2 Low light intensity is a key factor for shoot organogenesis
from guayule leaf tissue. Leaf strips were prepared from 1-month-
old G7-11 plantlets grown on half-strength MS medium in Magenta
boxes. They were cultured on MSB2 medium for 3 weeks in high
and low light intensities. Bar: 1 cm. Left: Low light (∼5 µmol/m2/s);
Right: High light (∼50 µmol/m2/s). Fig. 6 Shoots regenerated from
leaf strips cultured on (1/2NH4

+)MSB2 medium for 4 weeks un-
der low light. Bar: 1 cm. Fig. 7 Guayule leaf strip transformation:
(a) leaf strips were inoculated with Agrobacterium tumefaciens and
co-cultured on 1/10MSBN medium for 3 days; (b) shoot initiation
on (1/2NH4)MSB2TG1 medium for 6 weeks (three subcultures); (c)
shoot elongation on (1/2NH4)MSB1TG0.6 medium for 8 weeks (four
subcultures); (d) rooting on half-strength MSI0.1TG0.5 medium for

4 weeks. Bar: 1 cm. Fig. 8 Transient GUS expression. A leaf strip
showing blue spots after GUS staining conducted 3 days after co-
culture. Bar: 1 cm. Fig. 9 GUS test after rooting. Leaves were cut from
the plantlets grown in the Magenta box and they were cut into strips
for GUS staining. Control: non-transformed guayule G7-11; #1–#8:
transformed G7-11 plantlets. Bar: 1 cm. Fig. 10 Stable GUS expres-
sion of #1 plantlet. a View through a dissecting microscope. b A small
guayule plantlet with roots showing GUS activity. Bar: 1 cm. Fig. 11
Resistance to glufosinate. Non-transformed G7-11 (left) and trans-
formed G7-11 #4 (right) leaf discs were soaked in (1/2NH4)MSB1
liquid medium containing 1 mg/l glufosinate ammonium. Photo was
taken 7 days after soaking. Bar: 1 cm

glufosinate was reduced to 0.6 mg/l. It took 8 more weeks
for some of the shoots to reach ≥10 mm (Fig. 7c). These
shoots were transferred to rooting medium containing
0.5 mg/l glufosinate. After 2–4 weeks, rooted plantlets
(Fig. 7d) were transferred to half-strength MS medium in
the Magenta boxes for maintenance. The shoot tips from

1-month-old plantlets were inserted into a sterile cellulose
plug for rooting and then transplanted to the soil.

The transformation efficiency (Table 1) ranged from 3 to
6%, a significant improvement over the shoot node method
(0.7%).
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Fig. 3 Effect of different light intensity. G7-11 leaf strips cultured on
MSB2 medium in different light intensities. Data collected 4 weeks
after culture started. A Number of explants produced shoots under
different light intensity. B Total shoots produced under different light
intensity

GUS assay

Transient GUS expression from the pND4 transformed
leaf strips could be detected after 3 days of co-cultivation
(Fig. 8). Endogenous GUS activity was not detected in
leaf tissues from non-transformed control plants (Fig. 9).
Eight plantlets from different leaf strips and transformed
by pND4 EHA101 all showed GUS activity. Stable GUS
expression could be detected 1 year after transformation
(Fig. 10a and b).

Herbicide resistance

When leaf disks from regenerated plantlets were soaked in
1 mg/l glufosinate, the leaf discs from the non-transformed
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Fig. 4 Effect of duration of low light treatment. G7-11 leaf strips
cultured on MSB2 medium under high light intensities but covered
with paper. The light intensity under paper was ∼5 µmol/m2/s. Data
collected 4 weeks after culture started

control plants turned yellow in 1 week, while the leaf discs
from transformed plantlets remained green (Fig. 11).

Molecular analysis

PCR analysis of guayule plantlets revealed a 0.8 kb
band (part of the GUS gene) in all glufosinate-
resistant plantlets, as predicted, but not in the non-
transformed control (Fig. 12). Southern blot analysis also
showed a positive GUS signal in all glufosinate-resistant
plantlets, the copy number ranging from 1 to 5, but
no signal was detected in the non-transformed control
(Fig. 13).

Table 1 Transformation
efficiency

Vectors Total
explants

Resistant
plantletsa

GUS+
plantletsa

PCR+
plantletsa

Transformation
efficiency (%)

pND4 200 10 8 8 4
pND4 200 17 12 12 6
HMGR AN pND4 200 9 na (HMGR AN) 6 3

Note. na, not applicable; the GUS gene in pND4 was replaced by HMGR gene from Aspergillus nidulans
a These plantlets were regenerated from different leaf strips. They represent independent transformation
events
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Fig. 5 Effect of low ammonium on shoot organogenesis from
guayule leaf tissue. G7-11 leaf strips cultured on MSB2 and
(1/2NH4

+)MSB2 medium under high and low light intensities. Data
were collected 4 weeks after culture started

Fig. 12 PCR analysis. P: plasmid pND4; Ctrl: non-transformed con-
trol; #1-#7: transformed G7-11; M: DNA marker

Selection with kanamycin

Three lines of guayule, G7-11, AZ101CL, and N6-5, were
transformed with Agrobacteria harboring pBIN19-based
binary vectors. Kanamycin-resistant calli grew out from the
leaf strips under low light and low ammonium conditions
(Fig. 14), and produced shoots and roots. Preliminary data

Fig. 13 Southern blot analysis with DIG labeled probe. P: plasmid
pND4; Ctrl: non-transformed control; #1–#7: transformed G7-11;
DNA samples were digested by HindIII. M: DNA marker
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Fig. 14 Selection with kanamycin. Agrobacteria ABI harboring each
of the following vectors were used to transform three genotypes of
guayule. PMEN65: empty vector; G0000: no vector; G1073, G1792,
G1451, G1274 and G2979: vectors containing kanamycin-resistant
gene and different target genes

showed the ratio of green calli produced to total explants
transformed ranged from 0 to 50%.

Discussion

This is the first report of shoot organogenesis from, and
transformation of, guayule leaf tissue. By using low light
intensity, guayule leaf strips produced healthy green shoots
within 4 weeks on (1/2NH4)MSB2 medium. Light inten-
sities below 12 µmol/m2/s increased the regeneration ef-
ficiency by 3–4-fold compared to the normal culture light
intensity of 40–50 µmol/m2/s. The optimal light inten-
sity for guayule leaf tissue regeneration is 1.5 µmol/m2/s.
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Reduced ammonium and supplemental nitrate further in-
creased the regeneration efficiency. Also, low light and
low ammonium conditions greatly helped Agrobacterium-
mediated guayule leaf tissue transformation. We have suc-
cessfully obtained glufosinate-resistant and GUS positive
guayule plants from guayule leaf tissue. Transformation ef-
ficiency ranged from 3 to 6%, much higher than the shoot
node method. Our method also avoids the time consuming
wounding process previously used.

Dark or low light conditions are commonly used for so-
matic embryogenesis. Somatic embryogenesis of wheat
(Wang and Wei, 2003), barley (Ganeshan et al. 2003),
and oat (Nuutila et al. 2002), using leaf base segments
as explants, were all induced in the dark. Somatic em-
bryo induction in poplar (Michler and Bauer 1991) and
Podophyllum (Arumugam and Bhojwani 1990) requires
absolute darkness. Complete darkness was needed for
embryogenesis of Norway spruce when ammonium was
present in the medium (Verhagen and Wann 1989). Dark-
ness was effective for induction of carrot somatic embryos,
as was green or red light, while blue light or white light at
higher intensities was inhibitory (Micheler and Lineberger
1987). For soybean, low light intensities (10 µmol/m2/s),
or light provided by Grolux fluorescent tubes, which pro-
vide more light in the red spectrum, resulted in higher
frequencies of embryogenesis (Lazzeri et al. 1987). An-
other report showed that the immature cotyledons of soy-
bean cultivars Jack and Fayette, produced more somatic
embryos under lower light intensity (5–10 µmol/m2/s)
than higher light intensity (50–60 µmol/m2/s), see
http://www.cropsoil.uga.edu/homesoybean/light.htm.

Since the female gamete is included in the embryo sac
embedded in the ovule (Dodeman et al. 1997), zygotic em-
bryogenic cells are light protected. Somatic embryogenesis
may be similar to zygotic embryogenesis in this point and
therefore dark or low light is necessary for induction of
somatic embryogenesis.

Shoot organogenesis from leaves, however, occurs from
the palisade mesophyll cell(s) next to the epidermis of
the explant and usually it first appears as a greener shoot
primordium. This is photomorphogenic development and
light is important in this process. For most plant species,
high light intensity (above 20 µmol/m2/s) was used.
Examples are tobacco (Dhaliwal et al. 2003), Lilium (lily)
(Bacchetta et al. 2003), Arachis pintoi (Leguminosae) (Rey
et al. 2000), Lycium barbarum L. (Ratushnyak et al. 1990),
Melia azedarach L. (Meliaceae family) (Vila et al. 2003)
Prunus domestica L. (plum) (Nowak et al. 2004), Saint-
paulia ionantha×confusa hybrids (African violet) (Lo
et al. 1997), Cajanus cajan (L.) Millsp. (pigeonpea) (Dayal
et al. 2003), Gypsophila paniculata L. (Gypsophila) (Zuker
et al. 1997), Plumbago (Plumbaginaceae family) (Das and
Rout 2002), Solanum melongena L. (eggplant) (Rotino and
Gleddie 1990), Pyrus communis var pyraster L. (wild pear)
(Caboni et al. 1999), Rosa hybrida (roses) (Ibrahim et al.
1998), Pothomorphe umbellate (pariparoba or caapeba)
(Pereira et al. 2000), Coleus forskohlii Briq. (Lamiaceae)
(Reddy et al. 2001), Scrophularia buergeriana Miq.
(figwort) (Park et al. 2003), Murraya koenigii (curry leaf

tree) (Babu et al. 2000), Paphiopedilum philippinense
(orchids) (Chen et al. 2004), Echinacea purpurea (purple
coneflower) (Koroch et al. 2002) Datura meteloides D. C.
(Curtis et al. 1999), and many more have been reported.

Few reports mentioned using low light or dark for shoot
organogenesis. Dolcet-Sanjuan et al. (1991) reported
adventitious shoot regeneration in Cydonia oblonga L.
(quince). Young leaves were kept in the dark for the first
3 weeks and then in 40 µmol/m2/s for the following
3 weeks. Cambecèdes et al. (1991) regenerated leaf
explants of Lonicera nitida Wils. cv. ‘Maigrün’ (Caprifo-
liaceae) using a 3-week-dark period following low light
(5.6 µmol/m2/s) treatment. Faure et al. (1998) reported
in vitro regeneration of spearmint and peppermint by
culturing leaf disks in the dark for 2 weeks and then
under low light (6 µmol/m2/s) for 6 weeks. Yadav and
Padmaja (2003) reported that initial incubation for 5 days
in the dark followed by transfer to 10/14 h light/dark cycle
(12.1 µmol/m2/s) for 45–50 days favored regeneration
from leaf segments of pigeonpea (Cajanus cajan L.).
However, none of these reports discuss the function of the
dark treatment.

Our results revealed one of the rare cases where organo-
genesis benefited from low light. When leaves are cut
into strips and infected by Agrobacterium, they suffer
wounding. Orozco-Cardenas and Ryan (1999) reported that
tomato plants generated hydrogen peroxide (H2O2) in re-
sponse to wounding. Guayule, a plant rich in secondary
metabolites, exhibits a more severe wounding response than
some other plant species. The leaf strips turn brown, wither
and die. The wounding response of guayule leaf strips is en-
hanced by high light and alleviated by low light. High light
may accelerate the octadecanoid pathway, or increase the
speed of H2O2 generation, or both. Low light may function
in an opposite direction and allow the leaf strips to recover
from wounding. It seems possible that shoot organogenesis
from leaf tissue in other plant species rich in secondary
metabolites also may be achieved under similar low light
conditions.

Pellegrineschi (1997) reported shoot organogenesis from
hypercotyls and cotyledons of Vigna unguiculata (L.)
Walp. (cowpea) cultured under low light (10 µmol/m2/s)
for 20 days and then stronger light (40 µmol/m2/s) for
20 days. The two-step low light to high light culture is very
similar to our culture conditions. Also, similar to our results
with guayule, shoot regeneration was higher in cultures of
Prunus avium (sweet cherry) leaves incubated with a 16/8 h
light/dark photoperiod (14 µmol/m2/s) than those incu-
bated in continuous darkness (Bhagwat and Lane 2004).

Our results also showed that guayule leaf strips grown on
(1/2NH4

+)MSB2 medium had a lower wounding response
than those on MSB2 medium. One possible reason might
be that the higher concentration of ammonia is toxic to
guayule leaf strips and accelerates the wounding response.
MS medium contains 1650 mg/l or 20 mM NH4

+. This con-
centration is optimal for tobacco but may be too high for
some other plants. Chio et al. (1998) reported that elimina-
tion of ammonium nitrate from MS medium promoted the
root growth of Korean ginseng plantlets. Rugini and Mu-
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ganu (1998) reported that media composition affected the
shoot maintenance, but not induction of shoot regeneration
from calli of Malus×domestica Borkh. cv. Golden Deli-
cious (apple) secondary leaflets; the best composition was
found to be high calcium (calcium nitrate 580 mg/l), low
ammonium (ammonium nitrate 230 mg/l) and low hormone
levels. Bassüner and Bauwe (1992) modified MS medium
by halving the NH4

+ level for in vitro Flaveria pubescens
(Asteraceae) plant regeneration. These results indicate that
lower NH4

+ in MS does benefit some plant tissue cultures.
In conclusion, an efficient shoot organogenesis and gene

transformation method has been established for guayule
leaf tissue. Low light and low ammonium are key factors in
making this method successful. Both herbicide resistance
and kanamycin resistance are effective selective markers
for transformed guayule cells. Transformation efficiencies
ranged from 3 to 6%, a significant improvement over the
previous best of 0.7%
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