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ABSTRACT

Practical statistical models were developed to quantify individual contributions from characteristics of conventional

and non-conventional fillers and predict resulting mechanical properties of both hevea and guayule natural rubber

composites. Carbon black N330 and four different agro-industrial residues, namely, eggshells, carbon fly ash, processing

tomato peels, and guayule bagasse, were used in this study. Filler characteristics were used as explanatory variables in

multiple linear regression analyses. Principal component analysis was used to evaluate correlations among explanatory

variables based on their correlation matrices and to transform them into a new set of independent variables, which were then

used to generate reliable regression models. Surface area, dispersive component of surface energy, carbon black, and waste-

derived filler loading were found to have almost equal importance in the prediction of composite properties. However,

models developed for ultimate elongation poorly explained variability, indicating the dependence of this property on other

variables. Agro-industrial residues could potentially serve as more sustainable fillers for polymer composites than

conventional fillers. This new modeling approach for polymer composites allows the performance of a wide range of

different waste-derived fillers to be predicted with minimum laboratory work, facilitating the optimization of compound

recipes to address specific product requirements. [doi:10.5254/rct.82.83716]

INTRODUCTION

Over 50,000 different products used on a daily basis worldwide are made with natural rubber,1

most of them containing fillers. Fillers are commonly used in the rubber industry either as diluents

or for the improvement of processing parameters and enhancement of properties such as modulus,

tear strength, abrasion resistance, and tensile and compressive strength.2–4 The reinforcement of

rubber by fillers has been extensively studied for decades.4–7 However, most of the research has

focused on carbon black and silica fillers.

Different theories have been formulated to explain the mechanisms of reinforcement of natural

rubber by fillers,4 most of them based on the evaluation of performance properties affected by

modifying a single filler characteristic, particularly surface area, thought to be the most important

morphological characteristic affecting filler reinforcing potential.2,8,9 Surface area and filler

loading (amount of filler in the composites) determine the available interfacial area between the

filler and the polymer.3

Filler structure also contributes to the reinforcing capability of the fillers by restricting polymer

chain motion.3,10 Filler particles can aggregate into complex tri-dimensional objects due to bonding

forces between the particles.8 Random spatial arrangement of the primary particles generates

different degrees of irregularity that define the structure of the filler.3 Complex filler structure also

can result from naturally occurring pores and surface roughness. However, unlike surface area, this
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filler characteristic is difficult to measure quantitatively. Also, different structures may coexist in a

sample of the same filler due to the random aggregation, filler type, and production method.2

In general, filler characteristics govern the final mechanical properties of composites by

determining the interaction between polymer and filler and the filler–filler interactions.3,10 Surface

activity must also be an important filler characteristic influencing rubber reinforcement because

surface activity determines the ability of the filler to interact with the polymer. Differences in

surface activity have been related to chemical groups on the surface of the particles3,11 but may also

result from structural heterogeneities.8 These differences result in variations of surface free energy,

a parameter that describes the interaction potential of a given surface.12,13 Wetting experiments

such as contact angle have been used for the evaluation of surface free energy of solid particles.

However, these methods have been designed for macroscopic flat surfaces, and the accuracy of the

measurements is limited by the size of the particles, surface roughness, and chemical

heterogeneity.14,15 Inverse gas chromatography (IGC) has proven to be a useful technique to

characterize the surface of small particles.16–18

A complete understanding of the relationships between filler characteristics and macroscale

mechanical properties of polymer composites has not been achieved. Furthermore, only limited

attempts have been made to quantitatively estimate the contribution of each individual filler

characteristic to the final composite properties and generate practical models to predict mechanical

properties of rubber composites from filler characteristics.19–21 Generally determining the extent to

which different fillers reinforce a specific type of rubber requires extensive lab work. Molecular-

level simulations require detailed information about the forces acting between the atomic centers,

which is often not available. Furthermore, simulations performed at the atomic level are usually

confined to relatively short oligomers22 and cannot be applied effectively to rubber composites.

A statistical modeling approach is proposed to quantify the contribution of filler characteristics

on mechanical properties of rubber composites and to establish functional relationships between

these variables. We have developed data-driven models that best represent the relationship between

the characteristics of different low cost, waste-derived, alternative fillers and mechanical properties

of natural rubber composites.

EXPERIMENTAL

MATERIALS

Four waste-derived materials, namely, eggshells (ES), carbon fly ash (CFA), processed tomato

peels (TP), and guayule bagasse (GB) were used. These materials were generously donated as

follows: ES by Michael Foods (Gaylord, MN, USA) and Troyer’s Home Pantry (Apple Creek, OH,

USA); CFA by Cargill Salt (Akron, OH, USA); TP by Hirzel Canning Co. & Farms (Toledo, OH,

USA). GB was generated as a co-product of latex extraction at our facility from guayule shrubs

donated by PanAridus (Casa Grande, AZ, USA). Waste-derived materials were separately ground

and sieved as described23 to obtain macro-sized (diameter (d) of 300–38 lm) and micro-sized (d of

38 lm–100 nm) particles. Carbon black N330 (mean particle size, 108 nm; SD, 31.42 nm), was

purchased from HB Chemicals (Twinsburg, OH, USA).

Probes used for particles’ surface characterization included non-polar n-alkanes of different

carbon chain length (C5–C9) and the polar probes, ethyl acetate, and dichloromethane. All probes

were chromatographic grade and were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Physical constants of the probes were taken from the literature (Table I).16 High purity methane

purchased from Praxair Technology, Inc. (Akron, OH, USA), was used as a non-interacting

probe.
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FILLER CHARACTERIZATION

Inverse Gas Chromatography. — The fillers’ surface energies were characterized by IGC,

using a packed column gas chromatograph GC-2014 equipped with flame-ionization detector,

Shimadzu Scientific Instruments (Columbia, MD, USA). Approximately 0.5–1.5 g of each filler

were packed by mechanical vibration into stainless steel columns (50 cm long with inside diameter

of 2.1 mm), and the two ends were plugged with silane-treated glass wool. The columns were

shaped in a smooth ‘‘U’’ to fit the detector/injector geometry of the instrument. To minimize

pressure drop across the GC column only macro-sized particles were used for the waste-derived

materials. Carbon black was used as received.

The packed columns were preconditioned at 105 8C with 10 mL/min helium sweep for 12 h.

After conditioning the columns, pulse injections were done with 0.04 lL for each of the probes.

Retention times were determined at 50 and 100 8C, with the injector and detector kept at 180 and 200

8C, respectively. Helium was used as carrier gas. The flow rate was 20 mL/min for ES, TP, and GB;

40 mL/min for CB; and 60 mL/min for CFA. The retention times were determined from the median

values of the elution peaks. Three columns were prepared for each material.

IGC Theoretical Background and Calculations. — The ability of a surface to interact with

another surface depends on their individual surface energies. Surface free energy (cS) is the result of

dispersive, cD
S , and specific components, cSP

S :24

cS ¼ cD
S þ cSP

S ð1Þ

IGC uses the relationship between the retention volume of the probes in contact with the filler

surface and the thermodynamic parameters to determine these surface properties. This relation is

given by the Gibbs free energy change equation:17

DG0
ad ¼ DG0

ed ¼ RTlnVN þ C ð2Þ

where DG0
ad and DG0

ed are the standard molar Gibbs free energy changes of adsorption and

desorption, R is the gas constant (8.314 J/K * mol), T is absolute temperature, and C is the

integration constant. VN is the net retention volume of the probe, and is calculated as

VN ¼ JFcðtR � t0Þ ð3Þ

where J is the James–Martin compressibility correction factor, Fc is the temperature

corrected flow rate of the carrier gas, tR is the retention time of the probe, and t0 is the

TABLE I

PHYSICAL CONSTANTS OF THE PROBES

Probe

Cross-sectional

area (a), 10�19 m2
Surface tension

(cD
1 ), J/m2

Electron acceptor

parameter

(cþI ), J/m2

Electron donor

parameter

(c�I ), J/m2

Pentane 4.92 0.0155 — —

Hexane 5.15 0.0179 — —

Heptane 5.73 0.0203 — —

Octane 6.30 0.0213 — —

Nonane 6.90 0.0227 — —

Dichloromethane 2.45 0.0245 0.0052 0

Ethyl acetate 3.30 0.0196 0 0.0192
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dead time determined from the retention time of a non-interacting probe (methane). VN can

be divided by the mass and surface area of the particles to obtain a specific retention

volume.25

Non-polar probes such as n-alkanes only will interact through London dispersive forces,26

even when they come into contact with polar surfaces. This characteristic has been used to quantify

the dispersive component of the surface of solids. The dispersive component can be calculated

using the method proposed by Schultz and Lavielle:17,24,25

RTlnVN ¼ 2Na
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cD

S 3 cD
L

q
þ C ð4Þ

where a is the cross-sectional area of the probe, N is Avogadro’s number (6.02331023/mol), and cD
S

and cD
L are the dispersive components of surface free energy of the solid and the probe, respectively.

For a series of n-alkanes, cD
S is calculated from the slope of RT ln VN versus a

ffiffiffiffiffiffi
cD

L

p
.

Unlike non-polar probes, which only interact with the solid surface through dispersive forces,

polar probes can interact with a solid surface through both dispersive and specific interactions.

Therefore, the standard molar Gibbs free energy change of adsorption for the interaction of the polar

probe and the surface under investigation17,27 is

DG0
ad ¼ DGD

ad þ DGSP
ad ð5Þ

where DGD
ad and DGSP

ad are the dispersive and specific free energies of adsorption. DGSP
ad has been

described in terms of the tendency of a surface to behave as either an electron acceptor or an electron

donor. These surface characteristics can be calculated using the Good–van Oss equation:27

DGSP ¼ 2Nað
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþI 3 c�S

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�I 3 cþS

q
Þ ð6Þ

where cþS and c�S are the electron acceptor and electron donor parameters of the solid surface, and cþI
and c�I are the electron acceptor and electron donor parameters of the probe. Monopolar acidic and

basic probes such as dichloromethane and ethyl acetate are used to measure cþS and c�S , which

allows the calculation of the specific component of the surface of solid (cSP
S ):16,27

cSP
S ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþS 3 c�S

q
ð7Þ

Evaluation of surface energy through IGC is based on the assumption that adsorption

and desorption equilibrium conditions between adsorbent and adsorbate are achieved. This

condition is satisfied by injecting very low concentrations of probes, which results in linear

adsorption isotherms and symmetrical chromatographic peaks. This chromatographic

condition is known as infinite dilution. Owing to the limited amount of probe, interaction

occurs only with the high-energy sites on the surface, and no probe to probe interactions

are expected, enabling an accurate and reproducible calculation of the retention

volume.17,28,29

Surface area and pore size distribution. — Surface area and pore size distribution of the

waste-derived fillers were determined from nitrogen adsorption–desorption isotherms at 77

K. The samples were analyzed using a Tristar II 3020 analyzer, Micromeritics Instrument

Corporation (Norcross, GA, USA). The particles were degassed at room temperature for 12

h prior to analysis. Surface area was calculated using the Brunaure–Emmett–Teller

method,30 while pore size distribution was calculated using the Barrett–Joyner–Halenda

method.31 Carbon black surface area was obtained from the specification provided by the

supplier.
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STATISTICAL ANALYSIS

Data. — Mechanical properties for the guayule and hevea rubber composites used in this study

were determined in previous work.23,32 These data include mechanical properties of vulcanized

composites manufactured by partially and fully replacing carbon black with different waste-derived

fillers, composites made solely with carbon black, and unfilled rubber compounds.

Data normality and constant variance assumptions were tested using the Shapiro–Wilk

normality test33 and visualized by histograms. The variables were categorized into response

variables (Yi ) which represent the different mechanical properties of the composites, and

explanatory variables (Xi ), which represent filler characteristics (Table II). The data were

standardized by subtracting the mean and dividing by the standard deviation before statistical

analysis.

Principal Component Analysis. — Principal component analyses (PCA) were used to evaluate

correlations among the variables based on their correlation matrices and to transform correlated

explanatory variables. In order to produce reliable probabilistic models, all explanatory variables

sould be completely independent. However, this is rarely the case in biological and engineering

systems. PCA is used to transform all the correlated explanatory variables into uncorrelated sets of

new variables that account for the majority of the original variance (principal component scores).34–

37 This is done by using a procedure that applies a matrix method as an essential mathematical tool.

The new standardized uncorrelated explanatory variables are given by Eq. 8.

PC½ �¼ X½ � T½ � ð8Þ

where [PC] corresponds to the value of the principal components and [T] is the matrix of principal

component loadings that multiplies the standardized original explanatory variables [X].34,38 PCA

was perfomed using the Stats package implemented in R.39 Principal component (PC) scores were

used as independent variables in multiple linear regression analysis to predict mechanical properties

of the composites.

Multiple Linear Regression. — Multiple linear regression (MLR) analysis was used to develop

models using JMP 11 Statistical Analysis Software (SAS Institute Inc., Cary, NC, USA). Two

different approaches were applied for model development. In the first approach, filler characristics

were used as explanatory variables (Table II) to predict the composites’ mechanical properties,

whereas in the second approach, PC scores obtained from PCA of filler characteristics were used to

predict tensile properties.

TABLE II

NOTATION OF DIFFERENT EXPERIMENTAL DATA USED FOR STATISTICAL ANALYSES

Variable notation Experimental data for model

Y1 300% modulus, MPa

Y2 Ultimate elongation, %

Y3 Tensile strength, MPa

X1 Total filler surface area, m2

X2 Dispersive component of filler surface free energy, mJ/m2

X3 Specific component of filler surface free energy, mJ/m2

X4 Carbon black loading, phra

X5 Waste-derived filler loading, phra

a phr: parts per hundred rubber
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The standard format for the regression models is represented by Eq. 9.

Y ¼ f ðX1;X2 . . . XkÞ ¼ aþ
Xk

i¼1

biXi ð9Þ

where Y is the response variable, X1, X2, . . ., Xk are the predictor variables, and a, bi for i¼1, 2, . . ., k

are the model constants.38 Non-significant terms were excluded from the models. Model adequacy

was evaluated based on residuals analysis. Coefficient of determinations (R2) and adjusted R2, were

reported.

RESULTS AND DISCUSSION

FILLER CHARACTERIZATION

Carbon black had the highest specific surface area among all the fillers (Table III). This is due to

its small particle size (108 6 31 nm). In general, specific surface area of all the waste-derived fillers

increased with decreasing particle size, except in the case of GB. For this filler, the micro-sized

particles had a lower surface area than the macro-sized particles, possibly due to a decrease in aspect

ratio. Grinding of the GB not only reduced the diameter of the fiber but also the length. CFA had the

largest specific surface area, both for macro- and micro-sized particles, due to its small particle size

and high porosity. CFA had the smallest mean particle size for both the macro-sized particles (89.32

6 61.94 lm) and micro-sized particles (12.12 6 4.93 lm),32 and the highest pore volume (Table

III).

Variations in filler surface energy were observed among the different materials (Table IV), due

to differences in energy sites where the interaction between the filler and the adsorbate occurs.

These sites correspond to chemical and structural heterogeneities in the surface of the material.40

Carbon black had the highest dispersive component (cD
S ) among the fillers used. Also, this was the

only filler with a higher dispersive than specific component (cSP
S ) of surface energy. All the waste-

derived fillers had a higher specific than dispersive component. A low specific component indicates

that the contribution of specific interactions in the adsorption of the filler is small and the surface of

the material is mostly only capable of interaction through London type interactions.16,41 Given the

non-polar character of natural rubber, dispersive forces play the main role in the interaction with the

TABLE III

FILLERS’ SURFACE AREA AND PORE VOLUME

Filler Surface area, m2/g Pore volume, mm3/gb

Carbon black N330 80.2a —

Carbon fly ash micro 10.440 21.391

Carbon fly ash macro 4.241 5.961

Eggshells micro 1.075 5.368

Eggshells macro 0.224 0.676

Guayule bagasse micro 0.482 0.730

Guayule bagasse macro 0.716 1.108

Tomato peels micro 0.852 1.409

Tomato peels macro 0.016 —

a Cetyl trimethyl ammonium bromide (CTAB) surface area.
b Barrett–Joyner–Halenda adsorption cumulative pore volume.
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filler. Therefore, composites containing fillers with high specific components have been associated

with weak polymer–filler interactions and strong filler–filler interactions.8

Carbon black surface energy can be explained by its particular chemical composition and

structure. Carbon blacks are mainly elemental carbon in the form of graphitic crystallites with

some amorphous regions. However, they also contain small quantities of other components,

namely, hydrogen, oxygen, and sulfur.8,42 CFA had both high dispersive and specific

components and overall the highest total surface energy (cS). CFA has a varying amount of

unburned carbon (20–1%), but it is mainly amorphous alumino-silicate (over 50%) and also

possesses large quantities of iron, calcium, potassium, magnesium, sodium, and sulfur

compounds.43,44 These polar groups on the surface of the CFA are able to exchange both

dispersive and specific interaction.

GB and TP both had high specific components and relatively low dispersive components

(Table IV). This can be attributed primarily to the presence of a large number of polar groups, such

as hydroxyl and carboxyl groups. However, both GB and TP are a complex assembly of

biopolymers in which structural heterogeneities also contribute to their surface energy. TP consists

of a thin cuticle layer, attached to the epidermal cell wall by a pectinaceous layer.45,46 The cell wall

is composed of cellulose and hemicellulose, structural proteins, and other non-polysaccharide

components such as phenolics.46 The cuticle layer is composed mostly of cutin, which is a polyester

rich in hydroxyl and epoxy fatty acids,45,47 overlaid with wax. GB is a ligno-cellulosic residue and

also contains approximately 10% terpene resin.48,49

ES had the lowest dispersive and specific components among all the fillers, due to its crystalline

structure. ES is 95% calcium carbonate crystals.50,51 Surface energy of the solid is not only

dependent on the chemical composition, but also the accessibility to high-energy sites, which is

determined by arrangement and orientation of chemical groups in the surface.18 Materials

containing an amorphous fraction present a higher surface energy than well crystallized materials.52

Other components in ES include magnesium carbonate, calcium phosphate, and organic

matter.51,53

Both dispersive and specific components decreased with increasing temperature for all the

fillers tested. This is likely due to desorption of surface impurities that contributes to the surface

energy at lower temperatures. Very broad peaks were obtained when ethyl acetate was injected as a

polar probe in CFA columns at 50 8C, which made it impossible to accurately determine the peak

maximum. Therefore, surface properties at 100 8C were used for the statistical analysis.

TABLE IV

FILLERS’ SURFACE PROPERTIES

Filler

50 8C 100 8C

cD
S ,a mJ/m2 cSP

S ,b mJ/m2 cS,c mJ/m2 cD
S , mJ/m2 cSP

S , mJ/m2 cS, mJ/m2

Carbon black 162.273 80.357 242.630 128.564 63.926 192.490

Carbon fly ash 119.594 — 108.474 126.787 235.261

Eggshells 21.035 53.318 74.353 11.454 21.281 32.735

Guayule bagasse 42.430 120.832 163.262 26.151 78.545 104.696

Tomato peels 46.136 216.174 262.310 29.276 151.576 180.852

a cD
S , Dispersive component of surface energy.

b cSP
S , Specific components of surface energy.

c cS, Total surface free energy.
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STATISTICAL ANALYSIS

Analysis of the Data. — Tensile strength and 300% modulus were highly positively correlated

with total filler surface area, dispersive component and carbon black loading, and negatively

correlated with waste-derived filler loading, in both guayule and hevea composites (Figure 1; Table

V). PCA biplots show graphically the correlation among variables (Figure 1). Each vector

represents a variable, and the correlation between any pair of variables is determined by the angle

between them. Vectors orthogonal to each other (908 angle) are independent from each other. If the

angle between two vectors is close to 08 these variables are highly positively correlated, but if the

angle is close to 1808 the pair of variables are highly negatively correlated.

The results obtained are in agreement with existing literature about the reinforcement of natural

rubber by fillers. The enhancement of these properties by filler is generally attributed to strong

polymer–filler interactions.4 Non-polar elastomers like natural rubber will mainly interact through

dispersive forces, and carbon black has a higher dispersive component of surface energy than the

waste-derived fillers studied (Table IV). Filler surface area determines the available contact area for

these interactions to occur. Negative correlations of tensile strength and 300% modulus and waste-

derived filler loading are due to particular characteristics of the filler studies and reflect the general

trend among the different fillers.

Although ultimate elongation was correlated to the same filler characteristics as tensile strength

and 300% modulus, the magnitude of the correlation coefficients was generally lower (Table V).

Overall, filler characteristics had an opposite effect on ultimate elongation than 300% modulus and

tensile strength.

Two-way interaction plots also were made to check for interactive effects among the different

response variables (Figures 2 and 3). Owing to the high correlation between waste-derived filler

loading and carbon black loading, only waste-derived filler loading was used in the analyses.

Fillers’ dispersive and specific surface energy components were combined into filler type, and

particle size range was used instead of the surface area. In the two-way interaction plot, interactive

effects between two explanatory variables on the response variables are indicated if the plotted lines

are not parallel to each other.

Interactive effects were observed particularly between waste-derived filler loading and type of

filler for both hevea and guayule composites. These interactions indicate that the effect of one

predictor variable on the response variable is different at different values of the other predictor

variable. Interactive effects between filler characteristics are understandable in rubber composites

due to the complexity of these systems. The contribution of the filler network to final composite

properties is an example of these interactive effects. A specific volume of particles, known as the

percolation threshold, is required in order to form this network. The percolation threshold depends

on the filler used. Different fillers will have different percolation thresholds due to differences in

aspect ratio.32,54 This means that the effect of the filler type will be different depending on whether

the loading is above or below the percolation threshold. Hence, interactive effects between filler

characteristics were included in the regression models.

Multiple Regression Analysis. — Regression models were developed for each of the response

variables both for hevea and guayule composites based on the explanatory variables and their

interactions (Table VI). These models excluded variables that were found not significant (p .

0.05). Coefficients of determination indicate the proportion of the variability explained by the

model.

The models proposed account for over 90% of the variability observed in the 300% modulus

response, for both guayule and hevea composites (Eqs. 10 and 13). In contrast, the models fitted for

ultimate elongation accounted for 74% of the variability in hevea composites and only 35% in

guayule composites (Eqs. 11 and 14). Approximately 83% and 82% of the variability in tensile
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FIG. 1. — Biplot generated by principal component analysis. (a) Hevea composites, (b) Guayule composites. PC1 is the first

principal component and PC2 is the second principal component. Y1, 300% modulus; Y2, ultimate elongation; Y3, tensile

strength; X1, total filler surface area; X2, dispersive component of surface energy; X3, specific component of surface energy;

X4, carbon black loading; X5, waste-derived filler loading.
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strength for hevea and guayule composites, respectively, was explained by the proposed models

(Eqs. 12 and 15). The low portion of variability explained by the models proposed for ultimate

elongation, particularly for guayule composites, indicates that other effects not considered have a

significant influence on this particular property.

Differences in variable combinations and the magnitude of model parameters between models

generated for hevea and guayule composites for the same response variable also were found. These

differences are mostly due to chemical and structural differences between these two natural rubbers

and the way they interact with the fillers. However, they are also a consequence of multicollinearity

within the data. Filler characteristics used as explanatory variables were strongly correlated among

FIG. 2. — Interaction of waste-derived filler loading with particle size (a, c, e) and waste-derived filler type (b, d, f ) on

mechanical properties of hevea composites. Particle size: macro , micro ; waste-derived filler type:

carbon fly ash , eggshells , guayule bagasse , tomato peels .
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each other (Table V). The presence of such strong multicollinearity makes the models obtained with

the original explanatory variables unable to determine the real effect of the filler characteristics on

the response variables.

Regression models were developed using PC scores that resulted from the transformation of

explanatory variables using PCA (Table VII). Nearly 90% of the variability in the 300% modulus

response was explained by the regression model (Eqs. 16 and 19) for both hevea and guayule

composites (Figure 4a and 4b), whereas the models generated for tensile strength (Eqs. 18 and 21)

accounted for approximately 80% of the variability observed for both rubbers (Figure 4e and 4f ).

Common variables in all of these models are PC1 and PC4. These two components’ main

contributions are attributed to total filler surface area and carbon black and waste-derived filler

FIG. 3. — Interaction of waste-derived filler loading with particle size (a, c, e) and waste-derived filler type (b, d, f ) on

mechanical properties of guayule composites. Particle size: macro , micro ; waste-derived filler type: carbon fly ash

, eggshells , guayule bagasse , tomato peels .
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loading (Table VIII). For both 300% modulus and tensile strength, PC1 had a positive effect on the

response, while PC4 had a negative impact as indicated by the sign of the coefficients (Table VII).

This means that a total increase in total filler surface area and carbon black loading will generate an

increase in the responses proportional to their contribution in the model. On the other hand, an

increase in waste-derived filler loading would adversely affect these two responses for both guayule

and hevea.

PC5 was found to have a significant effect for 300% modulus in hevea composites (Eq. 16) but

not in guayule composites (Eq. 19). However, owing to the low percentage of the portion of the

variance in the filler characteristics explained by PC5 (,0.1%) (Table VIII), the removal of this

effect from the model (Eq. 16) will only slightly reduce the R2 to 0.880. PC2 was included as a

significant factor for the prediction of tensile strength for guayule composites (Eq. 21) but was not

significant for the same response in hevea composites (Eq. 18) and so was not included here. Unlike

the models fitted for modulus, the removal of PC2 will have a greater impact on the prediction of

tensile strength (R2 decreased from 0.80 to 0.75) for guayule composites due to the larger portion of

the variance in filler characteristics explained by PC2 (.22%) (Table VIII).

PC2 had a negative effect on the tensile strength of guayule rubber composites. This component

is heavily influenced by specific components of surface energy, which indicates that this filler

characteristic is important in predicting the tensile strength of guayule composites but not of hevea

composites. This is due to the impact that this filler characteristic has on the vulcanization of the

TABLE VI

REGRESSION MODELS USING THE STANDARDIZED ORIGINAL INDEPENDENT VARIABLES

Regression Equation R2
Adjusted

R2
Equation

number

Hevea composites

Y1 ¼ �0.541 � 4.759X1 þ 3.924X5 þ 2.765X1X4 � 2.536X4X5 0.922 0.910 10

Y2 ¼ 0.714 � 16.092X3 � 0.692X4 þ 0.536X5 � 10.722X3X4 0.743 0.705 11

Y3 ¼ 0.404 � 9.177X3 þ 0.589X4 � 6.065X3X4 0.835 0.817 12

Guayule composites

Y1 ¼ (�2.94e � 16) � 0.175X2 þ 1.106X4 0.931 0.927 13

Y2 ¼ (5.14e � 16) � 0.342X3 þ 0.540X5 0.350 0.308 14

Y3 ¼ 0.082 þ 0.540X3 � 0.817X5 � 0.533X3X5 0.820 0.802 15

TABLE VII

REGRESSION MODELS USING PRINCIPAL COMPONENT SCORES

Regression Equation R2
Adjusted

R2
Equation

number

Hevea composites

Y1 ¼ (�5.09e � 7) þ 0.481PC1 � 0.810PC4 � 2.475PC5 0.896 0.885 16

Y2 ¼ (�4.573e � 7) � 0.3666PC1 0.471 0.454 17

Y3 ¼ (�6.254e � 7) þ 0.456PC1 � 0.765PC4 0.792 0.778 18

Guayule composites

Y1 ¼ (�8.047e � 7) þ 0.497PC1 � 0.663PC4 0.914 0.909 19

Y2 ¼ (2.258e � 7) þ 0.256PC1 0.232 0.208 20

Y3 ¼ (�8.447e � 7) þ 0.446PC1 � 0.210PC2 � 0.662PC4 0.800 0.780 21
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rubber. A high specific component results from a more chemically active surface. These highly

active surfaces can interact with compounding ingredients, affecting the cure kinetics, and leading

to differences in crosslink density that affect mechanical properties.11 Given that the same curing

system was used for all composites, this variable is more important in guayule than hevea because of

FIG. 4. — Standardized observed vs values predicted by regression models using principal component scores. (a) 300%

modulus, (c) ultimate elongation, and (e) tensile strength of hevea composites; (b) 300% modulus, (d) ultimate elongation,

and (f ) tensile strength of guayule composites. The red solid line represents the regression line; the red dashed lines indicate

the 95% confidence intervals; and the horizontal blue dashed line represents the mean response observation.
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differences in vulcanization behavior. Guayule rubber has lower curing rates due to different non-

rubber components than hevea.55,56

Contrary to 300% modulus and tensile strength, the variability explained by the models

generated for ultimate elongation was lower than 50% (Figure 4c and 4d) (Eqs. 17 and 20). This

means that other, unmeasured, variables contribute to the observed ultimate elongation. Filler

structure is an example of an unaccounted variable. Filler structure has been associated with

changes in ultimate elongation in carbon black composites.8,42 Fillers with highly irregular surfaces

due to branched aggregates and/or porosity restrict chain motion under applied strain and contribute

to physical crosslinking of rubber. Chemistry related variables such as the pH of the fillers also may

affect crosslink density and hence properties such as ultimate elongation. Alkaline fillers like ES

can cause faster curing rates, which can lead to higher crosslink density.11,32 Finally the presence of

terpene resins, such as those in GB, can also have an effect on resulting composite properties. These

resins can act as plasticizers, which would increase ductility of the materials.23

It is important to notice that PC1 is a comon variable in all the models (Table VII). This is

because this component alone accounts for over 70% of the total variation in the original

explanatory variables (Table VIII). PC1 is also slightly influenced by the dispersive component of

surface energy and the waste-derived filler loading.

Despite the lower R2 for the models developed with the transformed explanatory variables

(Table VII), these models are more reliable than the models developed using the original

explanatory variables (Table VI), which were highly correlated. Multicollinearity does not reduce

TABLE VIII

PRINCIPAL COMPONENT LOADINGS

PC1a PC2 PC3 PC4 PC5

Hevea composites

Total filler surface area 0.526 0.026 0.037 �0.482 �0.699
cD

S
b 0.462 0.309 �0.701 0.446 0.015

cSP
S

c �0.053 0.917 0.394 0.038 �0.011

Carbon black loading 0.526 0.022 0.083 �0.454 0.714
Waste-derived filler loading �0.479 0.251 �0.587 �0.601 0.032

Eigen value 3.520 1.133 0.243 0.100 0.003

Standard deviation 1.876 1.065 0.493 0.317 0.051

Proportion of variance 0.704 0.227 0.049 0.020 0.001

Cumulative proportion 0.704 0.931 0.979 0.999 1.00000

Guayule composites

Total filler surface area 0.524 �0.032 0.007 �0.482 �0.701
cD

S 0.470 0.272 �0.702 0.461 0.016

cSP
S 0.037 0.925 0.379 �0.006 �0.007

Carbon black loading 0.525 �0.039 0.049 �0.463 0.712
Waste-derived filler loading �0.477 0.262 �0.601 �0.585 0.027

Eigen value 3.541 1.126 0.227 0.103 0.002

Standard deviation 1.882 1.061 0.477 0.321 0.050

Proportion of variance 0.708 0.225 0.045 0.021 0.001

Cumulative proportion 0.708 0.933 0.979 0.999 1.00000

a PC, principal component.
b cD

S , Dispersive component of surface energy.
c cSP

S , Specific components of surface energy.
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the overall predicting power of the model, but it drastically affects the calculation of regression

equation. In regression models containing correlated explanatory variables, the variances of the

regression coefficients can become very large.34 This compromises the model’s ability to accurately

identify real contributions of the filler characteristic on a given response variable.

CONCLUSIONS

The statistical modeling approach employed proved to be an efficient tool for the estimation of

individual contributions of different filler characteristics on the properties of both guayule and

hevea natural rubber composites. This is important, considering the complexity of these systems

and the wide range of possible alternative fillers that remain unexplored. Furthermore, this

modeling approach can be used to predict properties in different polymer composites based on

specific polymer and filler characteristics, compounding formulations, and processing conditions.

Filler surface area and loading were found to be important variables contributing to composite

properties, particularly for 300% modulus and tensile strength. However, the new models

demonstrate that a single variable cannot predict all properties of rubber composites due to their

complexity. Therefore, a combination of two or more filler characteristics is required to provide a

good fit. The identification of the contribution of each filler characteristic to particular properties

makes it easier to target a particular material or combination of materials as potential fillers for a

given composite application based on the desired performance properties. This modeling method

can facilitate the screening of a large number potential non-conventional fillers and hybrid filler

composites and the optimization of properties.
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