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RESULTS AND DISCUSSION
Energy consumption and mechanical properties
• LGNR can act as a plasticizer, similar to NO, and both reduced compounding energy consumption.
• NO reduced tensile strength. In contrast, LGNR increased tensile strength.
• Both NO and LGNR increased elongation at break, and decreased the modulus and hardness.
• The LGNR composites stretched further before breaking and softened the composites significantly less than NO.

Liquid guayule natural rubber, a sustainable processing aid, improves 
the processability and mechanical properties of natural and synthetic 

rubber composites
INTRODUCTION
• Naphthenic oil (NO) is widely used as a processing oil

in rubber compounds to reduce mix viscosity and
make the compound ingredients easier and faster to
mix, with less energy [1].

• NO is refined from petroleum oil, so sustainable
alternatives are desired.

• Guayule is a alternative source of natural rubber (NR),
which is native to Mexico and Texas [2][3].

• Liquid guayule natural rubber (LGNR) may be a
sustainable alternative to NO.
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METHODS
• The effects of LGNR on rubber composites were

compared to NO and no processing aid.
• 20 phr (parts per hundred rubber) processing aids

were added to compounds made with carbon black
(CB) filled natural rubbers (Hevea natural rubber
(HNR) and guayule natural rubber (GNR)), and
synthetic rubber (styrene butadiene rubber (SBR)).

• The rubber compounds were mixed with 11.5 phr
sulfur based curing packages and 2 phr antioxidant
(6PPD) in an internal rubber mixer for 15 min, then
processed 9 times through a rubber mill, then cured in
a heated press.

CONCLUSIONS
• LGNR effectively improved rubber processability.

• LGNR maintained or improved the mechanical
properties of HNR, SBR and GNR composites – NO
caused deterioration.

• LGNR formed an additional crosslinking network
between the polymers of each type of rubber.

• LGNR provided better aging resistance than NO.

• LGNR renewable processing aids can improve the
sustainability of the rubber industry.
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AIM
• Renewable LGNR, produced by thermal degradation

of guayule natural rubber latex (GNRL) may improve
the processability, sustainability and mechanical
properties of natural and synthetic rubber composites,
compared to petroleum-based NO (Fig. 1.).
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(a) (b) (c) Fig. 2. Energy 
consumption and 
mechanical properties of 
rubber composites made 
with and without 
processing aids (NO and 
LGNR).
(a) HNR composites;
(b) SBR composites; 
(c) GNR composites.
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• Energy consumption analysis
• Thermal gravimetric analysis
• Tensile tests

• Durability tests
• Fracture surface 

measurements 

Durability
• LGNR maintained better thermal stability of rubber composites than NO, although both were less stable than rubber

compounded without processing aids.
• Higher retention of tensile strength and elongation at break indicated that LGNR protected against rubber aging.
• LGNR maintained or even improved ozone resistance of the composites, while NO reduced ozone resistance.
• The LGNR aging protection may be due to oxidized LGNR molecules produced by thermal degradation of GNRL.
• NO and LGNR had little effect on aged hardness.
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Fig. 3. Thermal stability, 
ozone resistance and 
aged mechanical 
properties rubber 
composites filled with 
and without processing 
aids (NO and LGNR).
(a) HNR composites;
(b) SBR composites; 
(c) GNR composites.

Stress-strain curves
• LGNR enhanced elongation at break and tensile strength due to a strong LGNR-rubber interaction.
• The toughness of all three rubber composites were enhanced by LGNR ( larger integral area).
• The LGNR curve had a steeper slope than the NO and GR curves for SBR composites, which can be explained by strain-

induced crystallization of LGNR (Fig. 4 (b)).

Fig. 4. Tensile stress-
strain curves of rubber 
composites filled with and 
without processing aids 
(NO and LGNR).
(a) HNR composites;
(b) SBR composites; 
(c) GNR composites.

Rubber-filler interaction
• The holes in the fracture surface were formed by filler

debonding, which was especially pronounced in SBR
composites with NO.

• The rough fracture surface of LGNR filled SBR
composites indicated strong rubber-filler interaction.

• The rubber “strings” in LGNR filled SBR composites
confirmed strong LGNR-CB and LGNR-SBR
interactions (Fig. 5 (c)).

Rubber string

(a) (b)

(c)

Fig. 5. Tensile fracture 
surfaces of SBR rubber 
composites. (a) without 
processing aids; (b) 20 
phr NO; (c) 20 phr LGNR
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Cured samples were assessed by the following
analyses:

Fig. 1. 
Diagram of NO 
replacement 
with LGNR in 
rubber 
composites.
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